High-resolution depth profiling: Overview

Lyudmila V. Goncharova

Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada

Analytical resolution vs detection limit

http://www.eag.com

Physical Limits of SiO₂ Gate Dielectrics

Schematic diagram of MOSFET*
(* from Sze S.M. Physics of Semiconductor Devices)

Scanning electron micrograph of cross-sectioned NMOS transistor

- EELS O-K edge spectra recorded point by point across a gate stack containing a thin gate oxide D. A. Muller et. al., Nature, **399**, 758-761 (1999)
- Bulk SiO₂ properties (e.g. large bandgap) lost for films ≤ 8 Å in thickness

Making things smaller – still the Si way!

Missing element from the picture... hydrogen!

Novel materials

Hydrogen storage

Fuel cells, functional membranes

Energy conversion

Nanoscale catalysis and corrosion

Fuel cell

Methods and presenters today...

- 9:00am Nuclear reaction analysis and narrow profiling, Fernanda Stedile, Universidade Federal do Rio Grande do Sul
- > 10:20am Medium energy ion scattering, Jaap van den Berg, University of Huddersfield
- ➤ 11:20am Secondary ion mass spectrometry applications in materials characterization, Stamen Dimov, Surface Science Western
- ➤ 13:20pm Positron annihilation for defect engineering and analysis for electronic materials, Peter Simpson, Western and Andy Knights, McMaster
- > 14:20am Neutron scattering and reflectivity for depthprofiled information, Jamie Noël, Western University

Ion-solid interactions

- (1) elastic scattering (RBS, LEIS, MEIS)
- (2) fast recoils arising from elastic scattering
- (3) steering effects due to the crystalline structure of target atoms
- (4) inelastic processes: energy loss as a function of depth
- (5) nuclear reactions (NRA and NRP)
- (6) interference of elastic scattering and nuclear interaction amplitudes, which leads to so-called resonant scattering

Positron Annihilation

> Vacancies present in any material...

Neutrons and Neutron Reflectometry

- > Interact with atomic nuclei via strong nuclear force
- ➤ Thermal neutron energy ~27 meV (k_BT)
 - Velocity ~2200 m/s
 - Wavelength ~ few Å
- ➤ Interaction strength and direction (attractive or repulsive) are independent of atomic number
 - Different with isotope
 - Coherent bound neutron scattering length

Ion-solid interactions

- (1) elastic scattering (RBS, LEIS, MEIS)
- (2) fast recoils arising from elastic scattering
- (3) steering effects due to the crystalline structure of target atoms
- (4) inelastic processes: energy loss as a function of depth
- (5) nuclear reactions (NRA and NRP)
- (6) interference of elastic scattering and nuclear interaction amplitudes, which leads to so-called resonant scattering

Elastic Collisions

Kinematic Factor, k

From Eq. 2 and 3, eliminating ϕ first, then v_2 , one finds the ratio of particle velocities, and we can show that the energy of projectile (M₁) after collision can be found by the following relationship:

$$E_{1} = E_{0} \left[\frac{\left(M_{2}^{2} - M_{1}^{2} \sin^{2} \theta \right)^{1/2} + M_{1} \cos \theta}{M_{2} + M_{1}} \right]^{2}$$

Ratio of E₁ and E₀ is called **kinematic factor**: $k = \frac{E_1}{E_o} = \left[\frac{\left(M_2^2 - M_1^2 \sin^2\theta\right)^{1/2} + M_1 \cos\theta}{M_2 + M_1}\right]^2$

Plot of the kinematic factor, k, vs scattering angle for H⁺ scattering from various targets

Advantages of Ion Beams

- Can be used for material modification and analysis
- Mass Specific
 Kinematic factor $E_1 = E_o \left(\frac{\sqrt{M_2^2 M_1^2 \sin^2 \theta} + M_1 \cos \theta}{M_1 + M_2} \right)^2$
- Cross sections are very well known
- Good depth resolution
- Penetrating (can access buried interfaces)
- What about substrate?
 - can use channeling and blocking effects

Ion channeling and blocking

Si (diamond structure)

Electrons vs Ions

When an ion collides with electron clouds in the solid, it does not loose much energy and its direction of motion is hardly change, in a contrast with electrons colliding with electrons

18keV e⁻ and 18 keV He⁺ striking a Si₃N₄ layer with a SiO₂ substrate

SRIM

http://www.srim.org/ ⇒ **Download SRIM-2013**

Calculated Ion Trajectories

Rutherford Backscattering: geometry and kinematics

$$E_1 = k E_o$$

$$k = \frac{E_1}{E_o} = \left[\frac{\left(M_2^2 - M_1^2 \sin^2 \theta \right)^{1/2} + M_1 \cos \theta}{M_2 + M_1} \right]^2$$

 α : incident angle

β: exit angle

θ: scattering angle

Optimized mass resolution for:

RBS Scattering kinematics: example 1

Key features of RBS

Ability to quantify depth profile of buried species with a precision of ~ 3%

Qualitative information: **kinematic factor**, *k*

$$k = \frac{E_1}{E_o} = \left[\frac{\left(M_2^2 - M_1^2 \sin^2 \theta \right)^{1/2} + M_1 \cos \theta}{M_2 + M_1} \right]^2$$

Quantitative: scattering cross section, σ

$$\frac{d\sigma}{d\Omega} \equiv \sigma(\theta) = \left(\frac{Z_1 Z_2 e^2}{4E \sin^2\left(\frac{\theta}{2}\right)}\right)^2$$

Rutherford Cross Section

- Neglecting shielding by electron clouds
- Distance of closest approach large enough that nuclear force is negligible
- ⇒ Rutherford scattering cross section

$$\frac{d\sigma}{d\Omega} \equiv \sigma(\theta) = \left(\frac{Z_1 Z_2 e^2}{4E \sin^2\left(\frac{\theta}{2}\right)}\right)^2$$

Note that sensitivity increases with:

- \triangleright Increasing Z_1
- \triangleright Increasing Z_2
- Decreasing E

RBS spectra from thin and thick films

The integrated peak count A_i for each element on the surface can be calculated using this equation:

$$A_i = (Nt)_i \times Q \times \Omega \times \frac{\sigma(E, \theta)}{\cos \theta}$$

where

(Nt), is areal density, atoms per unit area;

Q – ion beam fluency; Ω – solid angle of the detector; $\sigma(E, \theta)/\cos\theta$ – cross section of an element

Ion dose (fluency), solid angle, cross section

- lon dose (fluency), the number of incident particles (collected charge)
 - measured by Faradey cup
 - $Q = I \times t$
- > Solid angle, in steradians, sr
 - stays constant for a particular detector/detector slit
 - need to be verified by the calibration standard measurements

- Cross section (or differential cross section), in cm²/sr of the element
 - well known (tabulated) in Rutherford cross section regime

High-resolution depth profiling parameters

- Energy dependence of dE/dx for H+ and He+
- ➤ Maximum of ~ 14 eV/Å at ~ 100 keV for Si
- ⇒ This helps! Plus use of better ion detection equipment!

Ion detection equipment

- Detector energy resolution < 1keV</p>
- Magnetic spectrometers
 - Kyoto University (Kimura)
 - Kobelco
- Electrostatic analyzers
 - FOM IBM (Tromp, van der Veen)
 - High Voltage Engineering
 - Ion-TOF

Development of 3D-MEIS

Uncertainties in depth profiling analysis

Issues.	What they affect	Solution	
Neutralization ratio for H+ (He+, etc.)	Absolute concentrations (relative – ok)	Measurement by SSD Reference samples	
Energy loss and straggling parameters for H ⁺ in materials	Scaling of the depth; modeling	Independent analysis by TEM, XPSReference	
Non-gaussian energy distribution and non-statistical number of loss events	Peak shape; modeling, especially at the surface	Not an issue for films >2nm; new basic theory needed	
Film thickness, roughness and compositional gradient	May be confused with each other	Independent measurements by TEM, AFM, XPS, etc.	

Electrostatic detectors

$$A_i = (Nt)_i \times Q \times \Omega \times \frac{\sigma(E,\theta)}{\cos\theta} \times f^+$$

Need to detect hydrogen with high sensitivity and high <u>depth</u> resolution...

Some advantages of ERDA: good dynamic range; excellent hydrogen sensitivity; very well suited for analysis of light elements

Some disadvantages: Resolution; Sensitivity to surface contaminations

Method	High Sensitivity	High Resolution	Quantitative
SIMS	+	±	_
ERDA	+	-	+
NRA/NRP	+	±	+
LEIS	+	±	±
ME-ERD	+	+	±

Common Pitfalls for ion detection

- ➤ Damage effects are significant ⇒ surface needs to be refreshed under the beam
- Uniform lateral distribution is assumed
- > Charge fractions can vary between samples
- ➤ Accurate background fit is necessary to get quantitative fitting ⇒ calculations are necessary!

