ELECTRONIC STOPPING OF SLOW PROTONS IN OXIDES

<u>Dietmar Roth</u>, Barbara Bruckner, Andrei Ionut Mardare, Christina L. McGahan, Meirzhan Dosmailov, J. Iñaki Juaristi, Maite Alducin, Daniel Primetzhofer, Richard F. Haglund, Johannes D. Pedarning, and Peter Bauer

HRDP 8, Aug 7 – Aug 11, 2016, London, Ontario

OUTLINE

■ Interactions of ions with a solid

- Evaluation of LEIS spectra
- Electronic stopping: band structure effects in noble metals and insulators

■ Electronic stopping of H⁺ in oxides

■ Summary

INTERACTIONS OF IONS WITH A SOLID

■ Large angle scattering

■ Charge exchange

- Deceleration of ions
 - \Box due to interaction with nuclei
 - \Box due to interaction with electrons

"Electronic and nuclear stopping"

ELECTRONIC STOPPING IN A SOLID

• Stopping power $S = -\frac{dE}{dx}$

slow ions $(v \le v_F)$: interaction with valence electrons

■ slow ion = strong pertubation

■ theory: free electron gas (FEG)

$$S = Q(Z_1, r_s)v$$

Fermi & Teller, PR 72, 399-408 (1947) Non-linear model: Echenique et al., PRA 33, 897-904 (1986)

ELECTRONIC ENERGY LOSS: DEFINITIONS

stopping power
$$S = -\frac{dE}{dx}$$
stopping cross section
$$\varepsilon = -\frac{1}{n}\frac{dE}{dx}$$

$$\square \text{ elemental target materials:} \qquad n \dots \text{ number of atoms/cm}^{3}$$

$$\square \text{ compound materials (X_AY_B):} \qquad n \dots \text{ number of molecules/cm}^{3}$$

■ molecular density: ε depends only on electronic properties of the molecule but: number of valence electrons $N_{val} \leftrightarrow$ size of the molecule

LOW ENERGY ION SCATTERING

Yield of backscattered projectiles:

(single scattering approximation)

$$Y_{BS} = N_0 \cdot n\Delta x \cdot \frac{d\sigma}{d\Omega} \cdot \Omega \cdot \eta$$

 $N_0 \dots$ primary ion charge

n ... atomic concentration

 $d\sigma/d\Omega$...scattering cross sect. (V(*r*) = V_c(*r*) $\phi(r/a)$)

 Ω ... detector solid angle

 $\eta \dots$ detector efficiency

Large scattering cross section - multiple scattering important in LEIS

LOW ENERGY ION SCATTERING

Width of energy spectrum: (single scattering approximation) 1.5 keV $H^+ \rightarrow Au$ 800 $\Delta E_{BS} = \left| \frac{k}{\cos \alpha} \varepsilon \right|_{E_0} + \frac{1}{\cos \beta} \varepsilon \Big|_{kE_0} \left| \cdot n \Delta x \right|_{kE_0} \right|_{kE_0} \left| \cdot n \Delta x \right|_{kE_0} = \left| \frac{k}{\cos \alpha} \varepsilon \right|_{E_0} \left| \cdot n \Delta x \right|_{kE_0} \left| \cdot n \Delta x \right|_{kE_0} \left| \cdot n \Delta x \right|_{kE_0} \right|_{kE_0} \left| \cdot n \Delta x \right|_{kE_0} \left| \cdot n \Delta x \right|_{kE_0} \left| \cdot n \Delta x \right|_{kE_0} \right|_{kE_0} \left| \cdot n \Delta x \right|_{kE_0} \left| \cdot n \Delta x \right|_{kE_0} \left| \cdot n \Delta x \right|_{kE_0} \right|_{kE_0} \left| \cdot n \Delta x \right|_{kE_0} \right|_{kE_0} \left| \cdot n \Delta x \right|_{kE_0$ 22 Å Au N_{BS}(E) (arb.u.) 600 400 ΔE_{BS} $| \mathcal{E} | n \Delta x$ 200 $[\mathcal{E}]$... stopping cross section factor 0 1400 600 1000 1200 800 1600 final energy (eV)

Electronic and nuclear stopping may contribute to $[\varepsilon]$

LOW ENERGY ION SCATTERING

Height of energy spectrum:

(single scattering approximation)

$$H_{BS}(E) = \frac{\Delta Y_{BS}}{\Delta E_{BS}} = \frac{N_0}{\cos \alpha} \frac{d\sigma/d\Omega}{[\varepsilon]} \Omega \eta(E)$$

- $N_0 \dots$ primary ion charge
- $n \dots$ atomic concentration

 $d\sigma/d\Omega$... scattering cross section

- $[\mathcal{E}]$... stopping cross section factor
- $\varOmega \dots$ detector solid angle

 $\eta \ldots$ detector efficiency

Multiple scattering and nuclear losses in LEIS \rightarrow Data evaluation has to rely on MC simulations

DATA EVALUATION: ULTRA-THIN FILMS

 comparison to Monte Carlo simulations (TRBS)

■ variation of $\varepsilon \rightarrow$ change in width of vanadium peak ($\Delta E \propto [\varepsilon]$)

DATA EVALUATION: THICK SAMPLES

ELECTRONIC STOPPING IN NOBLE METALS: "kink" in stopping cross section

Experiment: slow H⁺ in Au $\leftrightarrow dE/dx \neq Qv$ DFT calculation of density of states (DOS)

ELECTRONIC STOPPING IN INSULATORS: velocity threshold

Experiment: S.N. Markin et al., PRL 103, 113201 (2009) TD-DFT calculation: Pruneda et al., PRL 99, 235501 (2007). ■ LiF: band gap E_g = 14 eV

$$v < v_{\text{th}} : (dE/dx)_{\text{electr.}} = 0$$

v_{th} lower than expected
 from e-h pair excitation
 (TD-DFT)

Different channel for electronic energy loss in insulators?

BAND STRUCTURE EFFECTS IN ELECTRONIC STOPPING

BAND STRUCTURE EFFECTS IN ELECTRONIC STOPPING

ELECTRONIC STOPPING OF H⁺ IN VO₂: ε per molecule

Reversible metal-to-insulator phase transition at ~ 340 K

LEIS measurements at
 300 K: semiconductor
 373 K: metal

Different ε in metal and semiconductor?

ELECTRONIC STOPPING OF H⁺ IN VO₂: ε per molecule

Reversible metal-to-insulator phase transition at ~ 340 K

LEIS measurements at
 300 K: semiconductor
 373 K: metal

Same ε observed for metal and semiconductor!

ELECTRONIC STOPPING OF H⁺ IN OXIDES: $\boldsymbol{\varepsilon}$ per molecule

HfO₂: D. Primetzhofer, NIMB 320, 100-103 (2014) SiO_2 and AI_2O_3 : P. Bauer et al. NIMB 69, 46 (1992)

JZU

Low velocity data:

ELECTRONIC PROPERTIES OF SELECTED OXIDES: How do they influence dE/dx?

	E _{gap} (eV)	N _{val}	r _s (a.u.)	ħω _{p,th} (eV)	ħω _{p,expt} (eV)
VO ₂	0 0.7	13	1.55	24	26
ZnO	3.4	6	2.13	15	18
Ta₂O₅	4.5	30	1.69	21.5	16
HfO ₂	5.5	12	1.69	21	15
Al ₂ O ₃	8	18	1.57	24	22
SiO ₂	9	12	1.72	21	23

ELECTRONIC STOPPING OF H⁺ IN OXIDES: ε per molecule \leftrightarrow band gap?

SiO₂ data: S.N. Markin et al., PRL 103, 113201 (2009) Al₂O₃ data: K. Eder et al., PRL 78, 4112-4115 (1997)

ELECTRONIC STOPPING OF H⁺ IN OXIDES: Free Electron Gas model?

	r _s (a.u.)	ħω _{p,th} (eV)	ħω _{p,expt} (eV)
VO ₂	1.55	24	26
ZnO	2.13	15	18
Ta ₂ O ₅	1.69	21.5	16
HfO ₂	1.69	21	15
Al ₂ O ₃	1.57	24	22
SiO ₂	1.72	21	23

$$r_{s,eff} = \left(\frac{47.1}{\hbar\omega_{p,expt}(eV)}\right)^{2/3}$$

JYU

ELECTRONIC STOPPING OF H⁺ IN OXIDES: $\boldsymbol{\varepsilon}$ per molecule \leftrightarrow Free Electron Gas model?

ELECTRONIC STOPPING OF H⁺ IN OXIDES: ϵ per molecule \leftrightarrow number of valence electrons?

 SiO_2 data: S.N. Markin et al., PRL 103, 113201 (2009) Al_2O_3 data: K. Eder et al., PRL 78, 4112-4115 (1997)

ELECTRONIC STOPPING OF H⁺ IN OXIDES: ε per O atom

• $v < 0.2 \text{ a.u.} (1 \text{ keV H}^+):$ ε of all oxides coincide • $v > 0.2 \text{ a.u.} (1 \text{ keV H}^+):$ ε of most oxides group within 15 % exception: ZnO

Excitation of O 2p electrons?

ELECTRONIC STOPPING OF H⁺ IN OXIDES: example: HfO₂

Valence band of oxides is dominated by O 2*p* electrons

ELECTRONIC STOPPING OF H⁺ IN OXIDES: ε at low velocities \leftrightarrow # of O atoms

 $N_{\rm O}$ is decisive quantity for ε at $v \ll v_{\rm F} - {\rm why}$?

ELECTRONIC STOPPING OF H⁺ IN OXIDES: ε at low velocities \leftrightarrow DOS per O atom

Electronic stopping in oxides \leftrightarrow number of O atoms (similar N_{val} in VB)

ELECTRONIC STOPPING OF H⁺ IN OXIDES: special case: ZnO

ELECTRONIC STOPPING OF H⁺ IN OXIDES: special case: ZnO

"Kink" in ε also observed for Zn metal

D. Goebl et al., PRA 90, 042706 (2014)

ELECTRONIC STOPPING OF H⁺ IN OXIDES: velocity threshold?

apparent $v_{th} \approx 0.06$ a.u. for all these oxides \leftrightarrow independent of band gap

SUMMARY

ACKNOWLEDGEMENTS

Linz:

Peter Bauer Barbara Bruckner Dominik Göbl Johannes Pedarnig Meirzhan Dosmailov Andrei Ionut Mardare

Nashville: Richard F. Haglund Christina McGahan

Uppsala: Daniel Primetzhofer

San Sebastián:

J. Iñaki Juaristi Maite Alducin Pedro M. Echenique Andres Arnau Daniel Sanchez Portal

THANK YOU FOR YOUR ATTENTION!

ELECTRONIC STOPPING OF H⁺ IN OXIDES: *ε* per molecule – comparison with literature

- HfO₂: excellent agreement between LEIS and MEIS data from Uppsala
- SiO₂: excellent agreement between LEIS data, RBS data from Linz and data from Fritz Aumayr's group in Vienna
- Al₂O₃: very good agreement between RBS data from Linz and data from Vienna

SiO₂ data: S.N. Markin, D. Primetzhofer, P. Bauer, Phys. Rev. Lett 103, 113201 (2009) Al₂O₃ data: K. Eder, D. Semrad, P. Bauer, R. Golser, P. Maier-Komor, F. Aumayr, M. Penalba, A. Arnau, J.M. Ugalde, P.M. Echenique, Phys. Rev. Lett. 78, 4112-4115 (1997)