The Report of the $1^{st} \& 2^{nd}$ International MEIS RRT with nm HfO₂ thin films and multilayer HfO₂ delta layers

DaeWon Moon, DGIST, Korea Wonja Min, KMAC, Korea Pedro Grande, UFRGS, Brazil G.G. Marmitt, UFRGS, Brazil RRT participants

ISO/TC201 Surface Chemical Analysis/SC4 Depth Profiling /SG1 (Non-destructive depth profiling using ion scattering) Reported in 2015, October 16, Seattle To be reported in 2016, October 14, Seoul

Medium Energy Ion Scattering (MEIS)

Summary of MEIS techniques used currently

Name	Energy Analyzer Type	Remarks	Major Users
TEA-MEIS	Entrance Slit + Toroidal electrostatic energy analyzer	Developed ~1980 By FOM most widely used.	IBM, Rutgers, Western Univ., UFRGS, KIST, Huddersfield (7)
HR-RBS	Entrance Slit + Magnetic sector energy analyzer	Developed ~ 2000 by Kyoto U.	Kyoto Univ., IBM-Fishkill, Samsung, SK (10)
TOF-MEIS	No slit Time-of-flight energy analyzer Detection of ions and neutrals	Developed ~ 2010 by KRISS/KMAC	DGIST, KMAC (2)

Are we doing all right ? Do we generate reproducible & reliable results ? >> critical for the growth of MEIS community.

Are the scattering cross sections $ds/d\Omega$ accurate enough for the MEIS energy range ? How about the electronic stopping power dE/dx and the electronic straggling ??

12 Participants of the 1st international MEIS RRT & analysis conditions

	A (DGIST)	B (KMAC)	C (SAMSUNG electronics)	D (SAMSUNG ADVANCED)	E (IF – UFRGS)	F (SK)	G (KIST)	H (Gustafsso n)	I(Kyoto univ)	J (IBM– East Fishkill)	K(Western University)	IBM
Equipment	TOF-MEIS	TOF-MEIS	HRBS	HRBS V500	TEA-MEIS	HRBS V500	TEA-MEIS	TEA-MEIS	HRRBS	HRRBS	TEA-MEIS	TEA-MEIS
Ion species	He+	He+	He+	He+	H+	He+	H+	H⁺	He+		H+	H+
Energy	80 keV	100 keV	499keV	450 keV	100 keV	300 keV	100 keV	100 (keV)	400(keV)	400(keV)	94.1keV	100keV
Current	0.15 nA	0.2 nA		30 nA	20 nA	25 nA	50~70 nA	5 (nA)	70nA	144nm	20nA	
Incident angle	45°	45°		54.6°	0°	45°	0°	5°	30.3°	45°	45°	54.74
Scattering angle	89~91°	130°	78.3°	70.5°	120°	58~64°	125.25°	133°	74.7°	80.8°	135°	90
Ion dose (Coulomb)		2E-6 C	1E15 C	2E-5 C	1E-4 C	20 nC	1.69E-16 C		70 μCx5 spectra	120000nC	45μC	1E-6 C
Beam radius	20 µm	0.12 mm		1 mm	1 mm	1 mm	1 X 0.5 mm	1 x 0.1(mm	2x2mm	2x3mm	1x0.15mm	0.1x1.0
Analysis time	30 min	160min		60min	90min	45min	240min	240/each min	~17min.	14min	4.5Hors	
HfOx density	9.68 g/cm ³	9.68 g/cm ³	8.1 g/cm ³	9.68 g/cm ³			9.69 g/cm³	9.69 g/cm ³	9.68 g/cm ³	9.68 g/cm³	9.68 g/cm³	9.68 g/cm ³
SiOx density	2.1977 g/cm ³	2.1977 g/cm ³	2.2 g/cm ³	2.33 g/cm ³			2.1977 g/cm ³	2.1977 g/cm ³	2.1977 g/cm ³	2.1977 g/cm ³	2.2 g/cm ³	2.1977 g/cm ³
Interatomic potential								Moliere	Moliere	Universal	Moliere	Moliere
Stopping power	Anderson- Ziegler	Anderson- Ziegler		TRIM code				Anderson- Ziegler	Anderson- Ziegler	Anderson- Ziegler	SRIM2k	ZBL
Electronic straggling	Chu	Chu		Yang				Lindhard Sharff	Yang	Yang	Bohr	Chu
Neutralization correction								Marion and Young	Marion and Young	Marion and Young	Energy dependent	empirical

Typical MEIS spectra of nm HfO2/nm SiO2 thin films

MEIS RRT with 1~7 nm HfO2/7nm SiO2/Si Thin Films Homogeneity Test by Ellipsometry

- sequential measurements of 7 spots according to the number given below with 3.5 mm intervals

- 5 measurements for each spot showed **the homogeneity of 0.3~0.5%**

Results Summary of the international MEIS RRT

Possible Causes of the Dispersion in the RRT

The definition of the thickness of HfO2 layer
#1: converting the areal density of Hf into HfO2 thickness with the bulk density of HfO2
#2: the position of 50% of the Hf plateau concentration
#3: others ??

- 2. Inconsistency of analysis parameters such as interatomic potential, stopping power, straggling for the ion energy region (from 80 keV to 450 keV)
- 3. Neutralization & its correction
- >> Simulations for the areal density of Hf with the same simulation program by the same person will be tried.

RRT Re-analysis by Wonja Min

Won Ja Min, K-MAC , 2015.8.19.

Simulations by SimNRA program (random only, dual scattering included)

> Anderson cross section AZ stopping Chu straggling

The low background between Si and Hf peak was subtracted to choose the optimum simulation fitting

The background around the O peak was fitted with a polynomial function, which was subtracted from the total intensity. The background subtracted O peak was compared with the simulated O elemental peak in green.

5 nm (TEA-MEIS)

Hf areal density Recalculated by Dr. Min using reported MEIS spectra

Inconsistency of analysis parameters such as interatomic potential, stopping power, straggling for the ion energy region (from 80 keV to 450 keV)

>> 100 keV H+ instead of 100 keV He+ was tried.

Hf areal density Reanalyzed with TOF-MEIS using 100 keV H+

Green; TOF-MEIS

Conclusions and Action Plans to Resolve Possible Causes of the MEIS RRT Discrepancies.

- 1. interatomic potential problems
 - : for 100 keV He+, SimNRA (Anderson cross section, AZ stopping) does not work.
 - : possible systematic errors between 100 keV H+ and 300 keV He+
 - C #1: adequate interatomic potentials for the MEIS range should be investigated.
 - C #2: possible systematic errors of electronic stopping power should be investigated (industrial demands)
 - AP #2: 2nd int. RRT with 1~7 nm HfO2 on 15 nm SiO2 & multiple delta (1 nm) HfO2/10 nm SiO2 layer can be tried.
- 2. background control and correction
 - C #1: instrumental improvement for minimum background is required (option or manufacturer's work)
 - C #2: consistent background measurement and correction

can be asked in the 2nd RRT.

TEM images of 2nd int. RRT samples with 1, 3, 5, 7 nm HfO2 on 15 nm SiO2 & multiple delta (1 nm) HfO2/10 nm SiO2 layer

1nm_400k 3nm_400k

5nm_400k

7nm_400k

Summary of TEM analysis : TEM cannot be regarded to be accurate. TEM thickness is just TEM thickness.

		thickness(nm)		
		average	standard deviation	
1.96,1.74,1.4	1st HfO2	1.70	0.28	
3.64,4.09,4.37	1st SiO2	4.03	0.37	
1.96,1.68,1.62	2nd HfO2	1.75	0.18	
3.64,3.98,4.03	2nd SiO2	3.88	0.21	
2.24,1.74,1.57	3rd HfO2	1.85	0.35	
3.36,3.92,3.92	3rd SiO2	3.73	0.32	
2.3,1.68,1.68	4th HfO2	1.89	0.36	
3.31,3.81,3.7	4th SiO2	3.61	0.26	
2.02,1.62,1.57	5th HfO2	1.74	0.25	
3.47,4.37,3.75	5th SiO2	3.86	0.46	
		thickness(nm)		
		average	standard deviation	
1.62,1.85,1.68	1nm HfO2	1.72	0.12	
3.25,3.3,3.42,3.19	3nm HfO2	3.29	0.10	
4.98,4.76,4.65,5.04	5nm HfO2	4.86	0.18	
6.44,6.33,6.44,6.33	7nm HfO2	6.39	0.06	

80 keV He+, Scattering angle 89° ~ 91°

(HfO2/SiO2)5/Si multi layer : HfO2 1nm, SiO2 5nm

2nd RRT hafnia thin film thickness: PowerMEIS analyses

I. Alencar, T. Avila, R.C. Fadanelli, P.L. Grande, M. Hatori, A. Hentz, L. Magnum, G.G. Marmitt, G. Onzi, M.A. Sortica, M.C. Sulzbach, H. Trombini

Laboratório de Implantação Iônica

Laboratório de Implantação Iônica Instituto de Física Universidade Federeal do Rio Grande do Sul

Energy loss in hafnia

PowerMEIS 70 Energy loss (10⁻¹⁵ eV cm⁻² per atom) fitte Primetshofer (2014) 60 Behar et al. (2009) 50 40 30 20 10 0 10² 10³ 10^{4} 10^{1} Helium energy (keV)

SRIM95 (PowerMEIS) Log normal function (fitted)

Behar et al., PRA 80 (2009) 062901 Primetshofer, PRA 89 (2014) 032711

Nominal thickness 1 nm

mean	0.76 nm
standard deviation	0.09 nm
maximum difference	0.29 nm

Nominal thickness 3 nm

mean	2.48 nm
standard deviation	0.09 nm
maximum difference	0.25 nm

Nominal thickness 5 nm

mean	4.15 nm
standard deviation	0.15 nm
maximum difference	0.49 nm

Nominal thickness 7 nm

mean	5.97 nm
standard deviation	0.12 nm
maximum difference	0.37 nm

Preliminary Discussions on the 2nd RRT results

- 1. Wonderful results (DaeWon) with better fitting electronic stopping powers (Log normal function by Pedro).
- 2. Little problems in applying MeV interatomic potentials to the MEIS range (Pedro).
- 3. 15 nm SiO2 layer was not used as a reference as in the 1st RRT but as a guide. (Errors in SiO2 layer were 5~10 % by Pedro)

- 1. Wonderful but tested only for HfO2 >> try 1~2 other materials (RRT or bilateral?)
- 2. Simulate again with SiO2 as a reference layer with accurate electronic stopping powers estimated from the multiple delta layers
- 3. How to generalize it for all the other elements & compounds ?

No Conclusions but open discussions