

Application of ERBS analysis on O diffusion in TiO2 films

G. G. Marmitt*

S. K. Nandi[†], D. K. Venkatachalam[†], R. G. Elliman[†], M. Vos[†] and P. L. Grande^{*}

*Universidade Federal do Rio Grande do Sul (UFRGS), Brazil †The Australian National University (ANU), Australia

Outline

- 1. Introduction
- **2.** ERBS analysis
- **3**. O diffusion in TiO₂
- **4.** Conclusions

Introduction

ERBS system

Materials characterization

Table 1.1 Imaging and analysis techniques employing electron, ion, and photon beams, with estimates of the achievable spatial resolution

Incident beam	Detected signal	Examples	Resolution (nm)
Electron	Electron	Electron microscopy (TEM, STEM)	0.1
		Electron diffraction (SAED, CBED)	10-1000
		Electron energy-loss spectroscopy (EELS)	<1
		Auger electron spectroscopy (AES)	~2
	Photon	X-ray emission spectroscopy (XES)	2-10
		Cathodoluminescence (CL)	
Ion	Ion	Rutherford backscattering spectroscopy (RBS)	1000
		Secondary ion mass spectrometry (SIMS)	50
		Local electrode atom probe (LEAP)	0.1
	Photon	Proton-induced x-ray emission (PIXE)	500
Photon	Photon	X-ray diffraction (XRD)	30
		X-ray absorption spectroscopy (XAS)	20
		X-ray fluorescence spectroscopy (XRF)	
	Electron	X-ray photoelectron spectroscopy (XPS)	5-10
		Ultraviolet photoelectron spectroscopy (UPS)	1000
		Photoelectron microscopy (PEM or PEEM)	0.5
	Ion	Laser microprobe mass analysis (LAMMA)	1000

Materials characterization

Table 1.1 Imaging and analysis techniques employing electron, ion, and photon beams, with estimates of the achievable spatial resolution

Incident beam	Detected signal	Examples	Resolution (nm)
Electron	Electron	Electron microscopy (TEM, STEM) Electron diffraction (SAED_CBED)	0.1
		Electron energy-loss spectroscopy (EELS)	<1
	Photon	X-ray emission spectroscopy (XES) Cathodoluminescence (CL)	2–10
Ion	Ion	Rutherford backscattering spectroscopy (RBS) Secondary ion mass spectrometry (SIMS) Local electrode atom probe (LEAP)	1000 50 0.1
	Photon	Proton-induced x-ray emission (PIXE)	500
Photon	Photon X-ray diffraction (XRD) X-ray absorption spectroscopy (XAS) X-ray fluorescence spectroscopy (XRF)	30 20	
	Electron	X-ray photoelectron spectroscopy (XPS) Ultraviolet photoelectron spectroscopy (UPS) Photoelectron microscopy (PEM or PEEM)	5–10 1000 0.5
	Ion	Laser microprobe mass analysis (LAMMA)	1000

EELS spectrum

Backscattering EELS

Elastic peak

Kinematic factor

$$E = E_0 - E_r = kE_0$$
$$k \approx 0.9999$$

For isotropic systems

$$\sigma = \left(\frac{4}{3} E_{kin} E_r\right)^{\frac{1}{2}}$$

Gaussian peak

$$E_r \propto E_0$$
 $\sigma \propto (E_{kin})^{\frac{1}{2}}$

ERBS system at ANU

- 500 eV e-gun
- 40 keV electrons

- High voltage cage
- Hemispherical analyser with ~0.35 eV resolution
 135^o scattering angle

* Went, M. & Vos, M. Nucl. Instr. Meth. Phys. Res. B, 2008, 266, 998-1011

ERBS analysis

Fitting, thickness measurement, multiple scattering

Fitting ERBS's spectra

First layer contribution

$$I_{i,0} = \gamma C_{i,0} \sigma_i \lambda_0 \left(1 - e^{-\frac{t_0}{(\cos\theta_1 + \cos\theta_2)\lambda_0}} \right)$$

Second layer contribution is attenuated

$$I_{i,1} = \gamma C_{i,1} \sigma_i \lambda_1 \left(1 - e^{-\frac{t_1}{(\cos\theta_1 + \cos\theta_2)\lambda_1}} \right) e^{-\frac{t_0}{(\cos\theta_1 + \cos\theta_2)\lambda_0}}$$

Thickness measurements

- Exit angle: 17 to 80°
- Displacement \rightarrow attenuation

* G.G. Marmitt, L.F.S. Rosa, S.K. Nandi, and M. Vos, J. Electron Spectrosc. Relat. Phenom. 202, p. 26–32 (2015)

Thickness measurements

- Xe sputtering in TiO₂
- Simultaneous fitting
- Preferential sputtering of O

* G.G. Marmitt, L.F.S. Rosa, S.K. Nandi, and M. Vos, J. Electron Spectrosc. Relat. Phenom. 202, p. 26–32 (2015)

Multiple scattering

* M. Vos, G.G. Marmitt, P.L. Grande. Surface and Interface Analysis, 2016.

O diffusion in TiO2

Memristors, sample preparation, results

TiO2 Memristor

Figure 1. (a) Memristor is the fourth basic circuit element. (b) The ideal TiO_2 memristor model. (c) The geometric variation model.

Bipolar switching model

O vacancies

Electric potential

Temperature

- Depositions (Set A)
 60 nm Ti¹⁶O₂
 20 nm Ti¹⁸O₂
- Inverted sample (Set B)
- Capping layer
- Thermal annealing in Ar
 5 100 min
 500 900°C
- HF chemical etching

- Depositions (Set A)
 Go nm Ti¹⁶O₂
 - \square 20 nm Ti¹⁸O₂
- Inverted sample (Set B)
- Capping layer
- Thermal annealing in Ar
 5 100 min
 500 900°C
- IF chemical etching

- Depositions (Set A)
 - \Box 60 nm Ti¹⁶O₂
 - \square 20 nm Ti¹⁸O₂
- Inverted sample (Set B)
- Capping layer
- Thermal annealing in Ar
 5 100 min
 500 900°C
- IF chemical etching

- Depositions (Set A)
 Go nm Ti¹⁶O₂
 - \square 20 nm Ti¹⁸O₂
- Inverted sample (Set B)
- Capping layer
- Thermal annealing in Ar
 5 100 min
 500 900°C
- HF chemical etching

ERBS measurements

40 keV electrons at glancing angles on both sets

Diffusion profile

Signal intensity

$$I(x) = I_0 \ e^{-l(x)/\lambda}$$

Weighted sum

$$H_i = \sigma_i \ \int_0^\infty I(x) \ \phi_i(x) \ dx$$

Diffusion equation

$$\frac{\partial \phi_i}{\partial t} = D \nabla^2 \phi_i$$

* M. Vos, P.L. Grande et al. Phys. Rev. Lett., (APS), 2014, 112

Activation energy

- ERBS spectra fitted with diffusion profiles
- Initial ¹⁸O concentration

Slope $\rightarrow E_A$ for O diffusion in TiO₂

$$D = D_0 \ e^{-\frac{E_a}{kT}}$$
$$\ln(D) = \ln(D_0) - \frac{E_a}{k} \ \frac{1}{T}$$

RBS measurements

4• **Conclusions**

Discussion, perspectives

Discussion & perspectives

- ERBS spectra have similarities to RBS and XPS
- Analysis can extract stoichiometry and thickness
- The activation energy of O diffusion in TiO2 was measured at 1.05 eV
- We are building RRAM devices to further study the formation of the filaments

Thanks!

G.G. Marmitt - gabriel.marmitt@ufrgs.br

- Au / Li2CO3
- Fixed geometry
- Energy: 5 to 40 keV

- Simultaneous fitting
- Background \rightarrow bandgap

* M. Vos, G. G. Marmitt, Y. Finkelstein and R. Moreh. The Journal of Chemical Physics, v. 143, n. 10, p. 104203, Sep 2015.

Thickness measurements

* G.G. Marmitt, L.F.S. Rosa, S.K. Nandi, and M. Vos, J. Electron Spectrosc. Relat. Phenom. 202, p. 26–32 (2015)

- Depositions (Set A)
 - $\Box \quad 60 \text{ nm } \text{Ti}^{16}\text{O}_2$ $\Box \quad 20 \text{ nm } \text{Ti}^{18}\text{O}_2$
- Inverted sample (Set B)
- Capping layer
- Thermal annealing in Ar
 5 100 min
 500 900°C
- IF chemical etching

NRP: 151 keV resonance ¹⁸O (p, α) ¹⁵N

Diffusion irregularity

Our measurements $500 \,^{\circ}\text{C} < \text{T} < 800 \,^{\circ}\text{C}$ $t = 5 \, \text{min}$ $E_A \sim 1.05 \, \text{eV}$ Arita et al. T > 1000°C t > 20 h $E_A \sim 3 \text{ eV}$

