

Combining MEIS with TRIDYN Modelling to Characterise a Plasma Doping Process

England, J.G., van den Berg, J.A., Rossall, A.K., Alencar, I., Marmitt, G.G., Trombini, H., Grande, P.L.

Overview

- Description of plasma doping (PLAD)
- Observations to be explained
- Use of dynamic bca model TRIDYN to describe PLAD
- TRIDYN PLAD Model 1 Simple
- Metrology to measure PLAD why MEIS
- Use of TRIDYN to guide analysis of MEIS
- Use of MEIS to guide inputs to TRIDYN
- TRIDYN PLAD Model 2 Calibrated by MEIS

Summary

PLAD Process Integration

0. Lithography			
Patterned photoresist selects implant areas			
1. Implant	2. Wet Cleans	3. Anneal	4. DHF
Introduce dopant	Remove photoresist	1000°C spike Activate dopant Repair damage	Remove surface oxide

- Substrates in this study are un-patterned wafers
- No photoresist, but follow steps 1-4 to mimic production process

PLAD Process

- Wafer biased (pulsed) in AsH₃/H₂ plasma
- Wafer irradiated with:
- Ions
 - ► Total flux measured in Faraday
 - Composition unknown
 - Direction normal to substrate ions accelerated across the sheath
- Neutrals
 - Flux unknown
 - Composition unknown
 - Direction unknown
 - Sticking coefficients unknown

6 External Use

TEM - Clean, Anneal, DHF

7 External Use

Post Clean TEM vs Energy

AsH₃/H₂/1E16cm⁻² *5% AsH₃ except 4keV case

4 keV (15% AsH₃)*

Planar Particle Beam Models

"TRIM":

- Developed by Biersack & Ziegler in 1983
- Define target by elemental composition of layers
- Layers are STATIC do not change during implant
- Particle collisions binary collision approximation
- www.srim.org

TRIDYN:

- Developed by Moeller and Eckstein in 1984
- Uses "<u>TRI</u>M" core of binary collision approximation
- Define target by elemental composition of its layers
- Layers are <u>DYNAMIC</u> account for atoms entering/leaving substrate and moving between layers
- W. Moeller and W. Eckstein, NIM B2 (1984) 814
- TRIDYN page via <u>https://www.hzdr.de</u>

TRIDYN Model 1 - Simple

Ions

- ► Total ion flux (1E16/cm²) assumed to be As⁺ with normal density of elemental As
- Neutral Deposition
 - ► All neutrals assumed to be AsH_x° atoms deposited simultaneously with ions
 - ► AsH_x° neutral flux of 10x As⁺ ion flux gives reasonable fit to data
 - ► AsH_x° represented by elemental As with density 35% of "normal" As
- Si surface at +10Å

What happened to the extra deposition?

- 35% dense As has same Z contrast as Si
- Modelled clean by:
- Removing all As down to Depth (0)
- Assuming [O] = 2x[Si] ...
- ... but reducing [O] when
 [Si]>2.3E22 cm⁻³

TRIDYN Model 1 – Profile Features

TRIDYN profiles aligned to dark line

TRIDYN Model 1 – Profiles vs Energy

Comments -1

- TRIDYN PLAD Model 1 qualitatively explains features observed in PLAD implants
- Only invoked binary collision approximation physics (e.g no RED)
- Chemistry can happen (surface decoration, snow ploughing, segregation)
- Graded density oxide predicted can we measure this*?
- Thicker deposition than observed explain
- Can improved TRIDYN model show the a/c interface occuring at same Si dpa?
- How quantitative can an improved TRIDYN model be?

* Igor Alencar - this session Joshua Rideout poster – PAS of these samples

Metrology – Why MEIS

- Avoided dynamic SIMS and dynamic XPS
 - Ion beam mixing / variable sputter rate effects
 - Matrix effect for secondary ionisation in SIMS
- TEM / EDS
 - "Curse of the TEM" what does a grey layer represent?
 - EDS reports atomic fractions only
- MEIS
 - No ion beam mixing or variable sputter rate effects
 - No matrix effects
 - ► Absolute atoms / cm² (→ atoms/cm³ with independent thickness measurement)
 - Understand spectrum fitting
 - Control sample orientation

MEIS spectra showing samples not significantly different for % AsH3

Medium Energy Ion Scattering Methodology

Apparatus

- He/100keV 54.7° scattering angle 90° for double aligned (47.7° tilt, 7° twist for random) at Huddersfield¹
- Report atomic fraction profiles using IGOR

MEIS Spectral Analysis

- I require atomic concentrations to compare to TRIDYN
- Atomic fraction (without density) often implies standard densities not the case in these samples?
- I used POWERMEIS² with small number of input layers
- Did I do it right?
- TRIDYN informed POWERMEIS layer densities / compositions
- TEM oxide thicknesses (not always same samples)

1. Jaap van den Berg / Andrew Rossall talks

2. Gabriel Marmitt poster - POWERMEIS

As Implanted

APPLIED

As Implanted – As Effusion

- Normalisation factor kept constant
- Sample left in vacuo for 17 days did not change (not shown)
- Clearly sample has lost As, gained O over 4 months

As Implanted – As Effusion

• MEIS analysis guided by TRIDYN suggests sample has also lost Si !

Alternative Fitting – Post Implant after 4 Months

Change Normalisation

Change Beam Energy

 Would have to increase As in sample

- ... leaving Si behind
- Would need to adjust As profile at all depths

- Increase 99.5 to 100.5 keV fits As peak - how fit Si edge?
- Variations with incident angle weak

Arsenolite Formation

- As effuses from surface in atmosphere – not in vacuo – over a time scale of months
- Consistent with report of Meirer et al, Applied Physics Letters 101 (2012) 232107
- Si cap forms and oxidises (– forming a barrier to slow down As effusion?)
- Si also lost?
- As profile in substrate unchanged

TRIDYN Model 2

- MEIS shows need to improve TRIDYN model inputs
- Reduced "heavy" ion fluence to half measured ion fluence
- Remainder are H ions (not included)
- Decreased neutral : heavy ion ratio vs energy using a linear relationship to be consistent with other observations (not shown)
- As neutrals assumed to have elemental density
- H neutrals included to account for under-dense deposition
- Add Si neutral flux to give ~1E22cm⁻³ Si observed in deposited layer at 7keV
 Assumed constant through implant simplest assumption
- Si ions included if there are neutrals should be ions
 - ► Reduces deep As to better fits TEM/EDS
- No native oxide on substrate assumed to be immediately etched away by H plasma

TRIDYN Model 2 – Post Implant, Clean, Anneal

Varian Semiconductor Equipment

TRIDYN Model 2 – Post Implant

Depth (nm)

TRIDYN Model 2 – Post Clean

P

TRIDYN Model 2 – Post Anneal

Model2 - AsH₃/H₂/7keV

No extra deposition predicted at 7keV

Model 2 vs Energy

- a/c interface at same Si dpa (50) for all energies
- Depth of As ions consistent with displaced Si measured by MEIS
- At 7keV, asimplanted thickness same as post clean thickness

Dose Retention vs Oxide Thickness

- Energy variation samples are post anneal – would have preferred post clean!
- Samples are thin oxide case

APPLIED

APPLIED

Depth (nm)

Contributions from ions and knock-ins to As profile more evident with energy

As retention increases with energy

Summary

- Many features of planar PLAD can be described using TRIDYN
- MEIS allows TRIDYN input species and fluxes to be measured
- Based on MEIS feedback a simple TRIDYN model was improved by
 - Including Si neutrals and ions
 - Reducing flux of As and Si ions
- TRIDYN can aid analysis of MEIS spectra
- Small details can give deep insights into PLAD process
- Choices of process and metrology conditions important
- Did a good job of fitting spectra with POWERMEIS?
- This work is being applied to 3D fins using TRI3DYN and TOF-MEIS with PowerMEIS analysis*

*Henrique Trombini – 3D Structures at UFRGS Daewon Moon – KMAC TOF-MEIS My talks at IBMM and ANU Workshop

Acknowledgements

- Wolfhard Moeller HZDR
- Jaap van den Berg and Andrew Rossall Huddersfield University
- Pedro Grande, Igor Alencar, Gabriel Marmitt, Henrique Trombini UFRGS
- Andy Knights, Joshua Rideout, Peter Simpson McMaster / UWO
- Many colleagues AMAT
- Mitchell Brockelbank UWO / AMAT
- Metrology EAG