

IBM T.J. Watson Research Center

MEIS of Materials for Post-Silicon Electronics

Matt Copel

© 2011 IBM Corporation

Outline

- Graphene growth modes on SiC
- Contacts to carbon nanotubes (CNTs)
- Materials for the PiezoElectronic Transistor (PET)
- Methods
 - MEIS with toroidal energy analyzer

Channeling

Graphene via thermal decomposition of SiC Jim Hannon, Ruud Tromp, Toshi Oida

- At temperatures >1200°C, SiC decomposes
- Liberated Si evaporates from the surface
- The carbon left behind forms graphene
- 3 SiC bilayers must decompose to form one graphene layer
- Wafer-scale synthesis process

⁽¹¹²⁰⁾ projection

Proposed Agenda

- Determine the graphene growth mode using isotopic labeling
 - Grow a thin (~3 ML) epitaxial Si¹³C "marker" layer
 - Use medium energy ion scattering (MEIS) to measure where the ¹³C goes when graphene forms

PRL <u>107</u>, 166101 (2011)

What is the graphene growth mode?

 Does a second layer (red) form on top of, or underneath, preexisting layers?

"layer by layer"

"from the inside out"

Growth on Si-face and C-face is very different

- Graphene layers are epitaxial on the Si face (evidence for "inside out"?)
- (Nearly) random stacking seen on C face.

Emtsev et al. PRB 77 (2008) 155303

Gr/SiC((0001)
Silicon	Face

Gr/SiC(000<u>1</u>) Carbon Face

© 2011 IBM Corporation

A direct measurement using isotopic labeling

- Grow ultra thin layer of SiC via CVD with ¹³C-ethylene
- Make graphene and measure the ¹³C depth profile using MEIS
- Do this for both SiC(0001) and SiC(0001)

MEIS simulations for two possible outcomes

• Should be easy to distinguish between the two cases...

Grow a few bilayers of Si¹³C via CVD

- CVD growth: disilane + ethylene
 1200 °C
- Very low growth rate
 - No nucleation (~1 bilayer/min)
 - Only step-flow growth
- After SiC growth, make graphene in the LEEM
 - Buffer layer formed at 1270 C
 - Subsequent layers at 1450 C

	-	-	
_		_	
-	_	_	
		-	

Si¹³C CVD Growth

IRMTI	Watson Research Center	

MEIS analysis: Si-face

- Blue: 1.3 carbon layers on SiC. ¹³C content of the graphene is 80%
- Green: 2.7 carbon layers on SiC. Top half of the graphene is 80% ¹³C, while the bottom half is only 45% ¹³C.
- Black dashed: simulation for the <u>reverse</u> stacking (45% ¹³C on top of 80% ¹³C).

-	-	-	
	-	-	
_	-	-	
		-	

MEIS Analysis: C-face

- Blue: 1.5 carbon layers. ¹³C content is 76%.
- Green: 2.5 carbon layers: 61% ¹³C in the top half, 17% ¹³C in the lower half.
- Black: 3.5 carbon layers: 61% ¹³C in the top 1/3, 20 % in the bottom 2/3.

Summary

- Graphene grows "from the inside out" on Si-face and C-face SiC(0001)
 - Isotopic labeling, monolayer epitaxy
 - LEEM \rightarrow 2d info
 - MEIS \rightarrow depth
- Disordered growth on C-face has other causes
 - maybe local bonding arrangements?

(1120) projection

	-	
-		
		the second se
_		

M. Copel

The PiezoElectronic Transistor: Forcing Materials to Switch

M. Copel,

Brian Bryce, Josei Chang, Li-Wen Hung, Marcelo Kuroda, Xiao-Hu Liu, Glen Martyna, Hiro Miyazoe, Dennis Newns, Stephen Rossnagel, Alex Schrott, Tom Shaw, Paul Solomon, Tom Theis, John Yurkas

IBM TJ Watson Research Center, Yorktown Hts, NY 10598, USA

Susan Trolier-McKinstry, Ryan Keech, Smitha Shetta Penn State

BM

What is the Piezoelectronic Transistor (PET)?

Idea

- Couple an actuator to a sensor
 - Actuator = piezoelectric
 - (PZT, PMN-PT)
 - Expands under applied voltage
 - Sensor = piezoresist
 - Becomes conductive under pressure
 - MEMS relay without a contact
- Concept well-developed
 - Newns et al, Advanced Materials 2012, & JAP 2012
 - Could replace CMOS!
 - Low power, high speed

- Requires
 - Bulk materials properties
 - Integration under rigid mechanical yoke

Rare Earth Chalcogenide Piezoresist

Underlying physics

- 4f band
 - no transport
- 5d band
 - conduction
- compression
 - raises 4f binding energy

M. Copel

- thermal carriers
- SmSe, SmS, SmEuS etc.

Pressure promotes 4f electron energy

Jayaraman, PRL, 1970

© 2003 IBM Corporation

IBM Research Division

_	_		
	-		
	_	_	

How to Make SmSe Thin Films?

Phase diagram

- Need monochalcogenide
- Many phases exist

Require precise control of supply

- Slight variation in composition lowers resistivity
- Growth
 - Co-sputter Sm & Se
 - Wafer temp 300C
 - Beware! Radiative heating of Se source!

_	
<u> </u>	
_	

SmSe Deposition Control

QCM1 QCM2 Sm target Se target SM: .000 SE .005 N : .500 TI: .117 d 10.00 SM: .000 SE: .008 N : .500 TI: .470 d 31.65 3nm TiN ×10³ SM: .492 SE: .522 N : .000 TI: .000 d 22.01 6nm Sm0.485 Se0.515 6 Ion Yield (counts) Se Sm 2

170

175

Energy (keV)

165

160

- Dynamic control
 - Quartz crystal monitor (QCM)
 - Feedback loop to RF supplies
- Able to get 50:50 composition
 - See medium energy ion scattering spectrum
 - Reads like RBS data
 - Need aggressive cooling of Se target & QCM
 - Se tooling factor liable to long-term drift
 - Constant vigilance needed

185

180

- High pressure (GPa range)
- Current flow transverse to film

- Via-confined current flow allows quantitative data analysis
- Thick AI pad distributes force from indenter ball

-		
	ē	

Materials Challenges

- Integration of Rare-earth Chalcogenide
 - Highly reactive with oxygen
 - How to passivate sidewalls?

- Reacts with XeF2 used for air-gap
- Compatibility with piezoelectrics?
 - Need to prevent oxygen flow

-	

•3nm TiN / 6nm SmSe / Si •reaction 750-850C –intermixing with TiN •or pinholes in TiN –not silicidation –very stable!

Ŧ		
	=	
<u> </u>		

approx 20% oxygen

need to check how deep it penetrates

_	_	_
-		
_		

IBM Research Division

30 nm SmSe after XeF2 etch (Si-cap removal) Marco Hopstaken, Micah Schamis

Complete Si-cap removal upon XeF2

F intensities increased by ~2 orders of magnitude

SIMS analytical conditions

19 nA 1.25 keV Cs+; analysis of negative ions at high mass resolution

300

First fully integrated PET!

IOP Publishing

Nanotechnology 26 (2015) 375201 (8pp)

Nanotechnology

doi:10.1088/0957-4484/26/37/375201

First realization of the piezoelectronic stress-based transduction device

Josephine B Chang, Hiroyuki Miyazoe, Matthew Copel, Paul M Solomon, Xiao-Hu Liu, Thomas M Shaw, Alejandro G Schrott, Lynne M Gignac, Glenn J Martyna and Dennis M Newns

IBM T. J. Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA

E-mail: josechan@us.ibm.com

Received 5 May 2015, revised 7 July 2015 Accepted for publication 22 July 2015 Published 25 August 2015

_		
	_	
_		
_		

PET Status

Gen I build

- Not integrated device
- Performance matched simulations
- Gen II build (integrated device)
 - Performance sacrifices
 - Encapsulation limited mechanical deformation
 - Successful build, except metallization fail
 - -Unreliable contacts
 - -Results difficult to interpret
- Future prospects
 - IBM-Penn State project discontinued
 - PET memory project
 - -IBM Zurich-led collaboration
 - -SmS for hysteresis

A gate voltage on the piezoelectric (PE) causes pressure to be applied to a piezoresistive (PR) material which induces an *insulator*—*metal* transition, thereby turning on the current through the sense terminal.

Summary

- Graphene grows "from the inside out" on Si-face and C-face SiC(0001)
- CNT contact metallurgy challenging problem for nFETs
- Problems & strategies for using rare-earth chalcogenides for piezoelectronics devices

IBM T.J. Watson Research Center

Backup

© 2011 IBM Corporation

Gen I Device: Split Actuator – Receiver

- Indenter ball substitutes for bridge structure (mechanical clamp).
- Sapphire plate insures insensitivity to indenter alignment.

Advantages:

- Separate fabrication of actuator (PE) and receiver (PR)
- Simple structure for early feasibility demo.
- Self leveling
- Provides a local displacement reference.
- No critical high step coverage metal is required.

PiezoElectronics

Device Results: Reliability

- Extended cycling of Gen I device
 - 100KHz, 8V p-p
 - Allows more cycles
 - Response
 - Minimal changes after 1.8x10⁹ cycles
 - Degradation after 7x10⁹ cycles
- Failure analysis
 - Time-dependent breakdown of PZT
 - Unpassivated PZT
 - millimeter-scale lines to access device
 - Not inherent to PET

IBM T.J. W	Vatson	Research	Center
------------	--------	----------	--------

		-	
	-	-	
	-	-	
_	_	_	

Well-separated isotope peaks

$$k = rac{E_1}{E_0} = \left[rac{\cos heta_1 \pm \sqrt{(M/m)^2 - \sin^2 heta_1}}{1 + (M/m)}
ight]^2$$

500 Values for *k* at $\theta = 110^{\circ}$ Si SiC(0001) with graphene, 100 keV 400 13**C** Ion Yield (counts) Si 0.908 300 $^{13}\mathrm{C}$ 0.81212 $^{12}\mathrm{C}$ 0.798200 100 0 85 80 90 Energy (keV)

Depth distribution from energy loss

- Protons travelling through matter suffer inelastic collisions
- Protons backscattered from deeper in the sample have lower energy

PRB 82, 041411R (2010)