

Quantitative Low Energy Ion Scattering: achievements and challenges

Institute for Experimental Physics Atomic Physics and Surface Science Johannes Kepler University Linz, Austria

Peter Bauer

8th International Workshop on High-Resolution Depth Profiling

HRDP

Western University London, Ontario, Canada August 7 - 11, 2016

Layout

- Intro
- Low energy ion scattering
 - \rightarrow ESA : ions only
- Achievements:
 - \rightarrow surface composition analysis
 - Scattering potential
 - Charge exchange
 - \circ information depth
- Challenges
 - \rightarrow subsurface information
 - $\circ~$ stopping power \leftrightarrow reionization probability
 - \rightarrow TOF-LEIS

Low Energy Ion Scattering

projectiles: noble gas ions, large scattering angle (no grazing collisions)

$$J_i^+ = I_0 \cdot P_i^+ \cdot c_i N_s \cdot \frac{d\sigma_i}{d\Omega} \cdot \Omega \cdot \eta_+$$

Surface composition analysis J_i^+ ... detected ion current (ions/sec) I_0 ... primary ion current (ions/sec) c_i ... atomic surface concentration N_s ... atomic surface density (atoms/cm²) P_i^+ ... ion fraction of atom *i* $d\sigma_i/d\Omega$...scattering cross section (atom *i*) Ω ... detector solid angle η_+ ... detector efficiency (incl. transmission)

OBERFLÄCHI PHYSIK

Low Energy Ion Scattering

ESA: only ions detected \leftrightarrow surface sensitivity

Sensitivity factor S_i^+

Intro

Low Energy Ion Scattering

ESA: only ions detected \leftrightarrow surface sensitivity

HRDP8, August 7 – 11, 2016, London Ontario

ATOM UND OBERFLÄCHEN PHYSIK

Intro

Scattering cross section

ATOM UND OBERFLÄCHEN PHYSIK

Surface composition analysis

ESA: only ions detected \leftrightarrow surface sensitivity

ATOM UND OBERFLÄCHEN PHYSIK

Charge exchange (He ions)

• Auger neutralization (AN)

is possible at any ion energy E & at any surface atom

- Resonant charge exchange (reionization, res. neutralization) (reionization & resonant neutralization) $E > threshold energy E_{th} \leftrightarrow R_{min}(E_{th}, \mathcal{G}) < R_{crit}$
- Quasi resonant neutralization (qRN)

resonant levels at atom and ion

(→ quantum oscillations, difficult quantification)

Charge exchange (He ions)

Auger neutralization (AN) ۲

is possible at any ion energy E & at any surface atom

- **Resonant charge exchange** (reionization, res. neutralization) • (reionization & resonant neutralization) $E > \text{threshold energy } E_{th} \leftrightarrow R_{min}(E_{th}, \theta) < R_{crit}$
- Quasi resonant neutralization (qRN) resonant levels at atom and ion • $(\rightarrow \text{quantum oscillations} \rightarrow \text{diff}$ \rightarrow How to do quantitative composition a How to obtain surface sens П 2.0x10⁻⁶ 4.0x10⁻⁶ 6.0x10⁻⁶ 8.0x10⁻⁶ 1.0x10⁻⁵ 0.0 1/v₀

Auger Neutralization (AN)

 Γ_A depends on electron density parameter r_s $\rightarrow \Gamma_A(r_s(x,y,z))$ in front of a surface

Typically, $\langle \Gamma_A \rangle \approx 1 \ \dots \ 2 \cdot 10^{15} / s$

Auger Neutralization (AN)

Rate equation (1D) for survival probability P⁺

$$dP^{+} = -P^{+} \cdot \Gamma_{A}(z)dt = -P^{+} \frac{\Gamma dz}{v_{\perp}}$$

$$\rightarrow \text{ survival probability } P^{+} = \exp(-v_{c}/v_{\perp}) \text{ with } v_{c} = \int_{0}^{\infty} \Gamma_{A}(z)dz$$
(He⁺ remains He⁺)

 v_c ... characteristic velocity \leftrightarrow AN efficiency $v_c \approx 1 \dots 2 \cdot 10^5 \text{m/s} \approx 0.1 \text{ a.u.}$

Typically, $\langle z \rangle \approx 1 \text{\AA}$... information depth due to AN

HRDP8, August 7 – 11, 2016, London Ontario

 J^+ , J^0

Energy spectrum of scattered ions in AN regime

HRDP8, August 7 – 11, 2016, London Ontario

$P^+(1/v_{\perp})$ in the AN regime

 He^+ – Cu: for E < 2.1 keV, only AN is possible

ion signal: 1st atomic layer dominates

Summary AN regime

• Information depth

high AN rate and long dwell time \rightarrow information depth ≈ 1 ML

• Quantitative composition analysis

AN depends on DOS \rightarrow matrix effects to be expected \rightarrow not first choice for composition analysis

рнусік

Resonant charge exchange in a close collision

Resonant charge exchange in a close collision

Resonant charge exchange in a close collision

$$P^{+} = P_{in}^{+} \cdot (1 - P_{RN}) \cdot P_{out}^{+} + (1 - P_{in}^{+}) \cdot P_{RI} \cdot P_{out}^{+}$$

Survivals (no AN, no RN) reionized projectiles (AN+RI)

AN: $P^+ = \exp(-v_c/v_{\perp})$ (survival probability)

RN: $P_{\rm RN} = 1 - \exp(-v_{\rm RN}/v)$... neutralization probability due to rate $\Gamma_{\rm RN}$ RI: $P_{\rm RI} = \exp(-v_{\rm RI}/v)$... reionization probability due to rate $\Gamma_{\rm RI}$

rates $\Gamma_{\rm RI}$, $\Gamma_{\rm RN}$: ??? RN, RI scale with velocity v

P⁺: Variation of geometry

$$E = E_{\text{th}}: P_{\text{RI}} = P_{\text{RN}} = 0$$

PHYSIK

 $E > E_{\text{th}}: P_{\text{RI}} > 0, P_{\text{RN}} > 0$

P⁺: Variation of geometry

ATOM UND OBERFLÄCHEN PHYSIK

Reionization He⁺ - Al_{poly}

• is active for $E > E_{th}$ (threshold energy)

4 keV He⁺ → Ta: ion spectrum

Information depth in reionization regime

penetration to deeper layers & reionization @ surface : \rightarrow information depth is due to P^+_{out} (no AN on way out)

MC-simulations and charge exchange

modeling the reionzation background in TRIM

by introducing a minimum number of additional parameters

 $- 4 \text{ keV He} \rightarrow \text{Cu:}$

OBERFLÄCHE PHYSIK Good agreement for $\Gamma_{\rm A} = 1.635 \cdot 10^{15} \, {\rm /s}$

Surface composition analysis

P⁺ (He – Si) – influence of oxygen exposure

ATOM UND OBERFLÄCHEN PHYSIK

P⁺ (He – Al) – influence of oxygen

Surface composition analysis

 P^+ (He – Ta) – P^+ (He – Ta₂O₅)

Linear dependence signal - concentration! Reionization regime is best suited for composition analysis But: physics of reionization is not yet understood!

Summary reionization regime

Information depth

polycrystals: surface peak \rightarrow information depth \approx 1 ML

quantitative surface composition analysis

probabilities P_{RN} , P_{RI} : depend only weakly on band structure \rightarrow "absence of matrix effects"!

Achievements

Characterization of graphene

3 keV He⁺ \rightarrow CH_x / graphene / metals? /Si

(Stan Prusa et al, Langmuir, 2015)

Achievements

Characterization of graphene layers

3 keV He⁺ \rightarrow CH_x / graphene / metals? /Si

(Stan Prusa et al, Langmuir, 2015)

Achievements

Characterization of graphene layers

(Stan Prusa et al, Langmuir, 2015)

challenges

Challenges: subsurface information

$He^+ \rightarrow subsurface Hf:$

Required input: dE/dx in Al₂O₃ multiple scattering reionization at surface

challenges

Reionization → **subsurface information**

ATOM UND OBERFLÄCHEN PHYSIK

challenges

TRBS + charge exchange ↔ experiment

Summary quantification

Reionization: best suited for composition analysis on matrix effects!

charge exchange still lacks basic understanding 🙁

Auger regime: not recommended for composition analysis band structure (matrix effects) effects to be expected

quasi resonant neutralization: not recommended for composition analysis

 P^+ oscillation amplitudes of a factor ~ 3,

 P^+ depends on band structure

Summary information depth

Reionization regime: ~ 1 ML for polycrystals (depending on E) may be larger for single crystals (focusing collisions)

Auger regime: $\sim 1 \text{ ML}$

quasi resonant neutralization: neutralizes much more effective than AN information depth = 1 ML

TOF-LEIS application: Cu/PET

TOF-LEIS application: Ag clusters/PET

(J M Flores-Camacho, 2011)

TOF-LEIS: growth Au on B

Growth of Au on B

TOF-LEIS: 1 - 10 keV He⁺ \rightarrow Au nanostructures on B

Information on coverage and height?

D. Primetzhofer et al., APL (2008)

TRBS-Simulations: 1 Å

Acknowledgements

Barbara Bruckner

Dominik Göbl

Dietmar Roth

Daniel Primetzhofer Acknowledgments:

Stefanie Rund Hidde Brongersma Roland Steinberger Carmina Monreal Karima Khalal-Kouache Edmund Taglauer

(c) Quasiresonant neutralization

• d-electrons (e.g., of Ge) are quasi resonant with He 1s level

Li	Be											В	С	N	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
K	Са	Se	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac				1					-						

(Hidde Brongersma et al., Surf.Sci.Rep. 62(2007) 63)

Quantum oscillations

d-electrons (e.g., of Ge) are quasi resonant with He 1s level \bullet

 \rightarrow quantum oscillations!

R

interatomic distance (arb.u.)

Quantum oscillations

Way in: at mixing distance $\mathbf{R}_{\mathbf{M}}$ the projectile "forgets" its charge state **collision:** phase difference $\Delta \phi$ evolves between the two paths (V₁, V₂) until projectile passes R_M again

 $qRN \equiv atomic collision:$ No dependence on α , β , α ß no $1/v_{\perp}$ scaling!

RM

$$a_{\perp} + b \cdot \cos^{2(\Delta \phi/2)}$$
, $l_{\alpha} = a_{\alpha} + b \cdot \sin^{2(\Delta \phi/2)}$

R_M

 \rightarrow I₊ oscillations are equidistant as f(1/v)

Interplay AN \leftrightarrow qRN \leftrightarrow RI

• Threshold energy for reionization: $E_f \approx 1200 \text{ eV}$ \rightarrow for $E_f < 1200 \text{ eV}$ only Auger neutralization \leftrightarrow quasi-resonant neutral.

Dominik Göbl et al., J. Phys.: Conden. Matt. (2013)

Quantum oscillations

Y⁺_{Pb} (COUNTS/COUL)

107

• d-electrons are quasi resonant with He 1s level

 \rightarrow quantum oscillations!

Quantitative P⁺ for He⁺ \rightarrow Ge

P⁺ << 1: qRN is very effective qRN works "one-way": $He^+ \rightarrow He^0$ $(He^0 \rightarrow He^+ \text{ is not possible!})$ No reionization up to 1.3 keV \rightarrow P⁺ = qRN-surviving probability $P^{+} = e^{-P_{qRN}} = e^{-v_{qRN}/v}$ $P^+ \approx 10^{-2} @ 1 \text{ keV} (v = 0.1 \text{ a.u.})$ \rightarrow v_{gRN} \approx 10⁶ m/s \approx 5·v_c \rightarrow qRN dominates over AN

(Goebl et al., 2013)

OBERFLÄCHEI Physik Information depth = 1 ML! (without reionization) \bigcirc Oscillation amplitude \approx factor 2: quantification \bigotimes

Quantitative P^+ for $He^+ \rightarrow Ge$

Information depth = 1 ML! (without reionization) OOscillation amplitude \approx factor 2: quantification O

ATOM UND OBERFLÄCHEN PHYSIK

TOF-LEIS Experiment: ACOLISSA

