MEIS studies of oxygen plasma cleaning of copper for fast response time photocathodes used in accelerator applications

<u>Tim Noakes</u>¹, Sonal Mistry², Michael Cropper², **Andrew Rossall**³, Jaap van den Berg³

 ¹ STFC Daresbury Laboratory, SciTech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK
² Department of Physics, Loughborough University, Loughborough, LE11 3TU, UK
³ International Institute for Accelerator Applications, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK

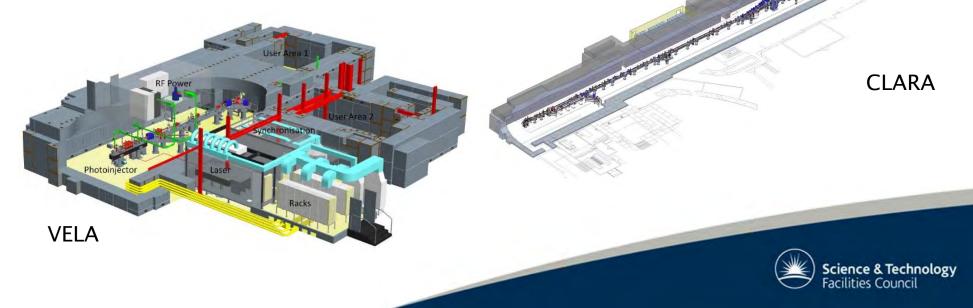
University o

HRDP8 – 9th August, 2016 Western University London, Ontario

Overview

- Motivation
- Experimental Details
 - MEIS Facility
 - Data Analysis
- Effect of plasma treatment parameters on oxide composition
 - Plasma power
 - Treatment time
 - Annealing temperature
- XPS Data comparison with MEIS
- Summary
- Further work

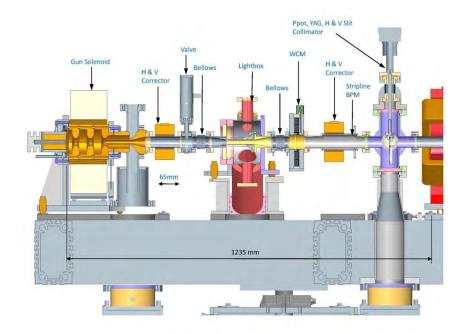
Photocathodes


Industrial applications

- Photomultiplier tubes
- Image Intensifiers

Accelerator Applications

- Light sources
- Electron accelerators for high-energy physics


Test facilities at Daresbury Laboratory

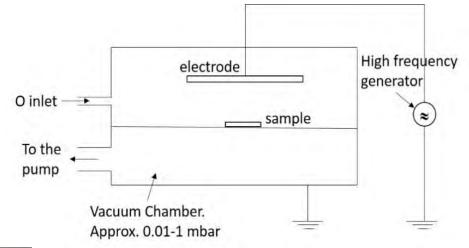
2.5 cell S-band RF Gun

2.5 cell S-band RF gun •

- Cu photocathode: $QE = 10^{-5}$ ٠
- Sub-100fs mode-locked laser •
- Field gradient of 100 MV/m •
- Max beam energy = 6.5 MeV۲

Photocathode preparation

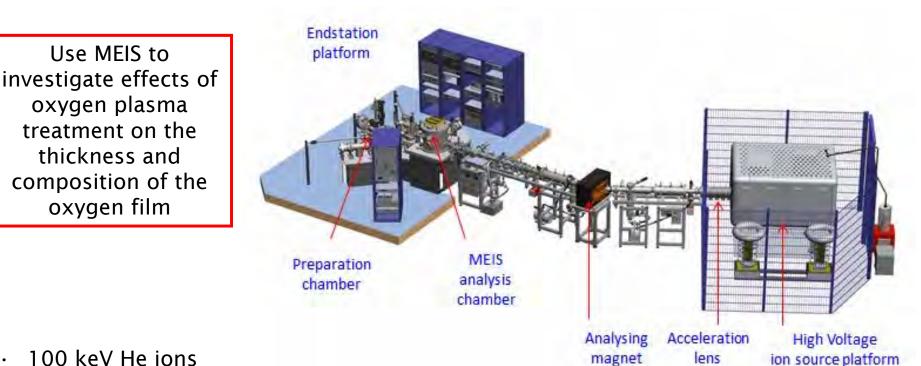
- carried out ex-situ •
- cathode transferred in-air •



Cathode Preparation

VELA Cu photocathode prepared by:

- O₂ plasma cleaning
 - Removes hydrocarbons
 - Likely to leave a thin protective oxide layer
- Heating to 250 °C (system bake)


Schematic of plasma cleaner

Poor detailed understanding of the changes in composition and thickness of the oxide film in this preparation process

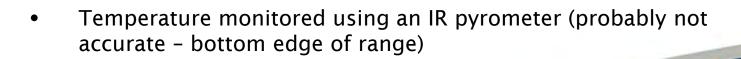
MEIS facility at University of Huddersfield

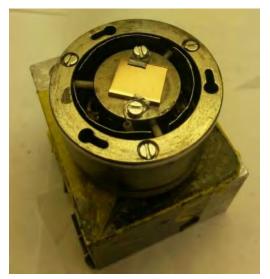
University of HUDDERSFIELD

Science & Technology Facilities Council

- \cdot 35.3° incidence angle, 90° scattering angle
- 0.5 x 1.0 mm spot size with a dose of 1.25 µC per tile (1.27 x 10¹⁵ atoms/cm²)

Experimental Detail


All samples cut from 'as-rolled' oxygen free copper cleaned with acetone and propanol


Investigate the Cu surface of samples exposed to oxygen plasma with

- Power levels between 10-100% (20-200W)
- Treatment times between 10-40 minutes

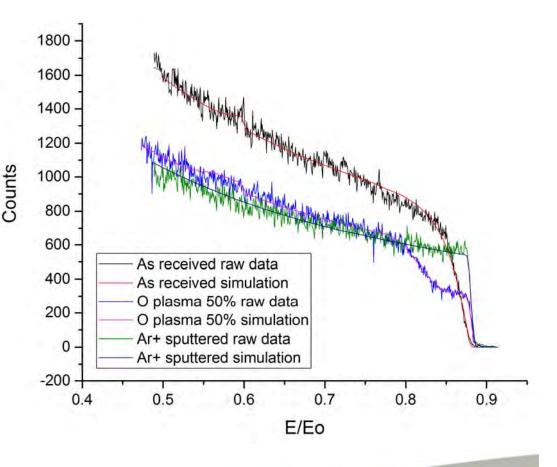
Samples mounted and transferred in-air to MEIS system

- Post heat treatment studies (in-situ MEIS)
 - ~300°C by radiative heating
 - ~600°C by e-beam heating

UDDERSFIE

MEIS Energy Spectra

Ar sputtered samples are essentially pure Cu at the surface and throughout


 Allows independent calibration of energy and resolution

As-loaded samples have lower energy and more inclined leading edge

 Thin (~4nm) layer of hydrocarbon contamination

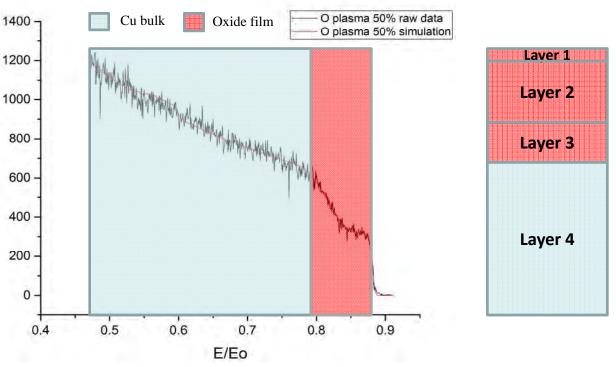
Oxygen treated samples have no hydrocarbon but thick oxide layer has been grown

- Step width gives the thickness
- Height gives composition (O signal not large enough to influence fit significantly)

University of UDDERSFIEL

Science & Technology Facilities Council

Depth Profiling


Data fitted using SIMNRA 5.02

Layer 1: Surface Layer

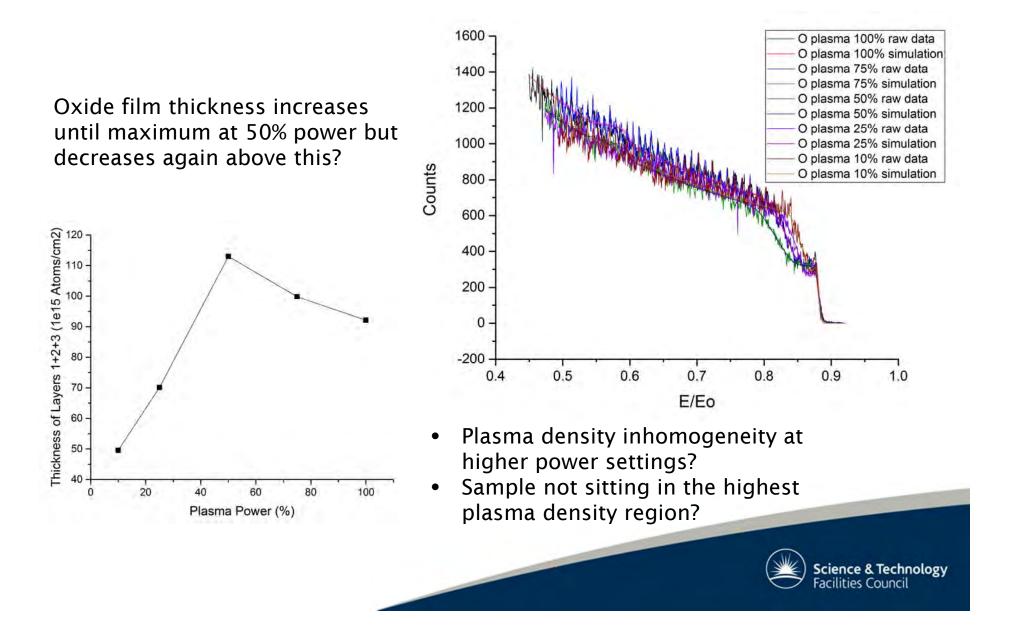
- Set to a couple of monolayers thickness (10x10¹⁵ Atoms/cm²).
- Composition was treated as variable

Layer 2: Oxide Layer

• Composition and the thickness of this layer were treated as variable to best produce a good fit.

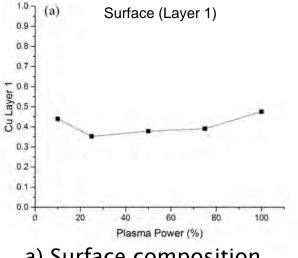
University of HUDDERSFIELD

Layer 3: Interfacial layer


- Composition and the thickness treated as variable
- This layer probably has gradually varying composition, but is modelled by a single composition with roughness added (in layer above) to smear out the signal and improve the fit.

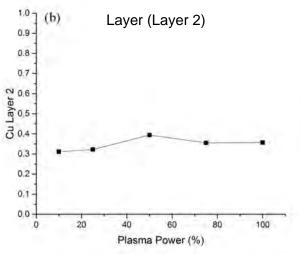
Layer 4: Cu Bulk

• Pure Copper bulk

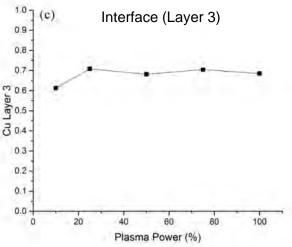


Plasma Power Variation

Plasma Power Variation


Copper fraction as a function of depth and plasma power

a) Surface composition slightly higher than layer beneath (40.7%)

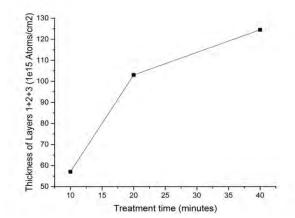

- Anomalous surface peaks seen previously for oxides (charge fraction)*
- Small reduction in oxygen content?

* See for example Kido, Nishimura and Fukumura, PRL 82 (1999) 3352

b) Layer composition consistent with CuO₂ (34.8%)

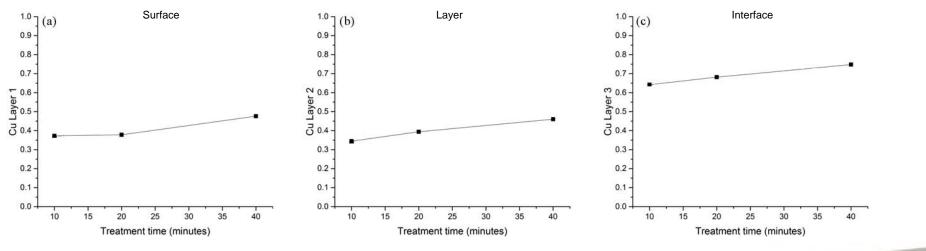
 Unusual form of copper peroxide formed in highly oxidising environments?

University of HUDDERSFIEL


c) Interface composition Cu_2O (67.8%) on average, but more likely to be gradually changing composition from higher oxygen content to bulk metal

Treatment time Variation

Film thickness increases with treatment time broadly as expected

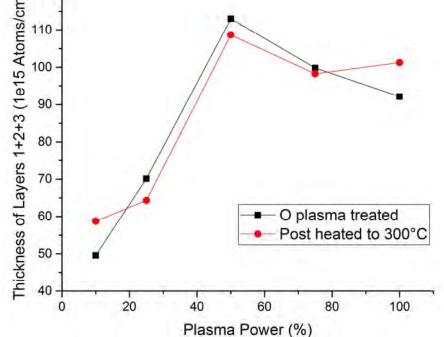

- Initial rapid increase with time
- As thickness increases diffusion and/or penetration of energetic species limits further increase

University of

HUDDERSFIELD

Copper fraction as a function of depth and treatment time

Composition data essentially shows the same behaviour as power variation data


Annealing

Film thickness unaffected by 300°C
 Thickness of Layers 1+2+3 (1e15 Atoms/cm2)

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 anneal (but completely removed by 600°C treatment) 110 >100 Cu-90 content (%) 80 70 Cu₂0→ 60 Cu 50 CuO - Cu content

 $CuO_2 \longrightarrow \begin{pmatrix} 40 \\ 30 \\ 0 \\ 0 \\ 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ 800 \\ Temperature (°C)$

Further data required to accurately assess the minimum temperature for complete oxygen removal

University of HUDDERSFIELD

Film composition moves to an average of 45%, closer to CuO (second layer of the model)

XPS Analysis

Depth Profiling with Thermo K-alpha instrument

Al K alpha monochromated source (1486.6 eV)

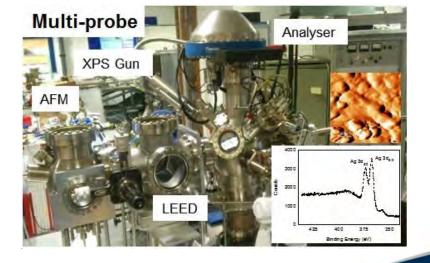
Flood gun for charge compensation 300 micron spot size

Snap scans with 128 channels, 151.2 eV pass energy, 5 scans at 1s (total time is 5s)

Etching: 200 eV Ar⁺ ion beam, 1.2 mm raster, 0.03nm/s based on Ta_2O_5 etch rate.

The peak fitting with a Lorentzian(70%)/ Gaussian(30%) mix and Shirley background.

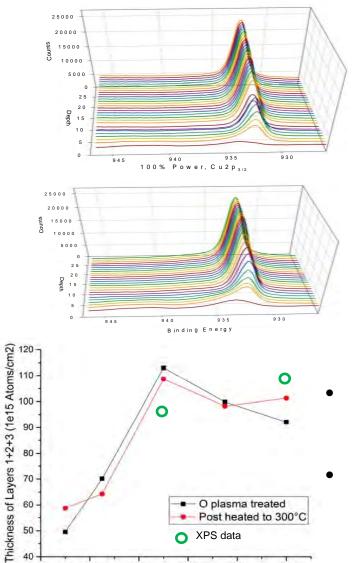
Scofield Relative Sensitivity Factors for quantification.


High Resolution spectra from Multiprobe instrument at Daresbury

Mg K alpha source (1253.6 eV)

Alpha110 analyser with 1.1 eV resolution average of 5 scans

CasaXPS analysis (Shirley background, Scofield RSFs)



XPS Depth Profile Cu 2p_{3/2}

50% Power, Cu2p_{3/2}

0

0

20

40

- O plasma treated Post heated to 300°C

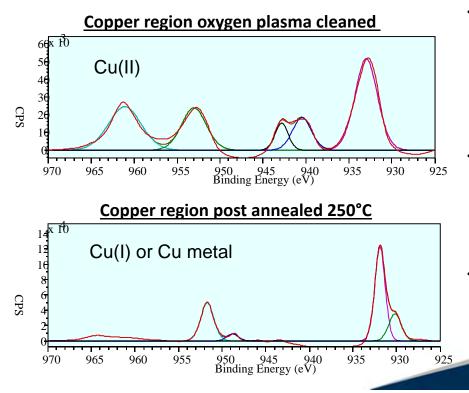

80

100

XPS data

60

Plasma Power (%)


- XPS sputter depth profiling for 50 and 100% power shows similar depths although 100% now marginally thicker.
 - XPS data is consistent with previous MEIS analyses

High Resolution XPS Data

Compositional analysis shows very high oxygen content

- Hydrocarbon contamination in as received is confirmed
- O₂ plasma treatment removes a significant amount (~95%) of this contamination

Metal	QE	Cu 2p _{3/2}	XPS (%) O 1s	C 1s
Cu Received O ₂ plasma Anneal 250°C ½ hrs	4.2E-6 0 1.6E-4	0.6 16.8 16.8	40.4 80.1 76.7	59.0 3.1 6.5

- Chemical shift data shows Cu(II) for the plasma treated sample (CuO_2 and CuO both have copper in the 2+ oxidation state)
- However, annealed sample indicates Cu(I) or metallic Cu, not consistent with compositional analysis or MEIS data?
- QE after anneal: 1-2 orders up

Summary

Oxygen plasma treatment removes hydrocarbon contamination and leaves an oxygen rich film $(CuO_2!)$

- Increasing treatment time increases thickness; composition remains the same
- Increasing power increases thickness until 50% above which it may be position sensitive?

Annealing to 250-300°C changes composition (less oxygen), however oxide thickness remains unchanged

- Doesn't appear to give metallic surface
- Oxide surfaces have higher work function
- Additional 'cleaning' from high power UV photoinjector laser during operation (QE of 2×10⁻⁵ seen)?

XPS results are largely consistent with the MEIS analysis

- Similar depth profiles and precise composition with the exception of an annealed sample
- XPS does agree with the high oxygen content
- Indicates the necessity for further work investigate the effect of the annealing process on the precise composition

University of

UDDERSFIE

Further Work

More detailed evaluation of annealing behaviour

- More accurate temperature measurement (thermocouple)
- More data points at different temperatures

Single crystal studies to determine the effect of surface orientation

• (111), (110) and (100) surfaces

Acknowledgments

Pat Cropper - Loughborough Materials Characterisation Centre

Reza Valizadeh, Adrian Hannah – ASTeC Vacuum Group

Boris Militsyn, Elaine Seddon – ASTeC Accelerator Physics Group

University (